Skip to main content

Thom polynomials of contact singularities of arbitrary relative dimension


Let Q be the local algebra of the contact singularity \Sigma_Q^l \subset \{ f:(C^*,0)\to (C^{*+l},0) analytic\} , and let \mu=dim(Q)-1. Here are two ways of presenting the Thom polynomials of \Sigma_Q^l for all relative dimensions l at the same time.

  1. There exists a rational function F_Q in the variables z_1,\ldots,z_\mu such that the Thom polynomial of \Sigma_Q for relative dimension l is

    \text{Tp}(\Sigma_Q^l)=(-1)^\mu \text{Res}_{z_1=\infty} \text{Res}_{z_2=\infty} \ldots \text{Res}_{z_\mu=\infty} \left( F_Q V_\mu K_\mu M_{\mu,l} \right),

    where

    • V_\mu=\prod_{j=1}^\mu \prod_{i=1}^{j-1} (z_j-z_i) is the Vandermonde discriminant,
    • K_\mu=\prod_{j=1}^\mu \left( \sum_{i=0}^\infty {c_i}/{z_j^i} \right) is the “kernel” function,
    • M_{\mu,l}=(\prod_{j=1}^\mu z_j)^l \cdot dz_\mu \wedge dz_{\mu-1} \wedge \ldots \wedge dz_1 is a monomial differential form.

    The rational function F_Q associated with Q is not unique.

  2. The Thom series of an algebra Qis a formal power series \text{Ts}_Q in d_i, i\in Z (typically given by an explicit formula for its coefficients or at least a recursion), such that

    \text{Tp}(\Sigma_Q^l)=\text{Ts}_Q|_{d_i=c_{l+1+i}}.

    We use the notation \Delta_{\lambda_1,\ldots,\lambda_r}=\text{det}\left(d_{\lambda_i+j-i}\right)_{i,j=1,\ldots,r}.

Below we present some known F_Q functions and Thom series.


\mu=1

Local algebra C[x]/(x^2)
\mu 1
Tp degree l+1
F_Q 1
Explicit Thom series d_0=\Delta_0

\mu=2

Local algebra C[x]/(x^3)
\mu 2
Tp degree 2l+2
F_Q \frac{1}{z_2- 2 z_1}
Explicit Thom series \sum_{i=0}^\infty 2^i\Delta_{i,-i}
Local algebra C[x,y]/(x^2,xy,y^2)
\mu 2
Tp degree 2l+4
F_Q z_1
Explicit Thom series \Delta_{1,1}

\mu=3

Local algebra C[x]/(x^4)
\mu 3
Tp degree 3l+3
F_Q  \frac{1}{(z_2-2z_1)(z_3-2z_1)(z_3-z_1-z_2) }
Explicit Thom series  \sum_{i=0}^\infty 2^i d_{-i}d_0d_i + 1/3 \cdot \sum_{i=1}^\infty \sum_{j=1}^\infty 2^i 3^j d_{-i} d_{-j} d_{i+j} + 1/2 \cdot  \sum_{i=0}^\infty \sum_{j=0}^\infty a_{i,j} d_{-i-j}d_id_j

where a_{i,j} is defined by the recursion a_{0,0}=0,a_{i,0}=a_{0,i}=3^{i-1} for i>0, and a_{i,j}=a_{i-1,j}+a_{i,j-1} for i,j>0.

Local algebra C[x,y]/(xy,x^2+y^2)
\mu 3
Tp degree 3l+4
F_Q  \frac{z_1}{(z_3-2z_1)(z_3-2z_2)(z_3-z_1-z_2) }
F_Q \frac{1}{2(z_3-2z_1)(z_3-z_1-z_2) }
Explicit Thom series \sum_{0\leq j<i} ((i,j)) \Delta_{i,j+1,-i-j}

where ((i,j)) is defined by the recursion: ((i,i))=0, ((i,0))=2^i-1, and ((i,j))=((i-1,j))+((i,j-1)) for 0<j<i.

Local algebra C[x,y]/(x^2,xy,y^3)
\mu 3
Tp degree 3l+5
F_Q  \frac{2z_1}{(z_3 - 2 z_1)(z_3 - 2 z_2)}
F_Q  \frac{z_2}{(z_3- 2 z_1)(z_2- 2 z_1) }
F_Q  \frac{1}{z_3- 2 z_1}
Explicit Thom series \sum_{i=0}^\infty 2^{i+1} \Delta_{i+1,1,-i}
Local algebra C[x,y,z]/(x,y,z)^2
\mu 3
Tp degree 3l+9
F_Q  z_1^2 z_2
Explicit Thom series \Delta_{2,2,2}

\mu=4 — under construction

Local algebra C[x]/(x^5)
\mu 4
Tp degree 4l+4
F_Q \frac{(2z_1+z_2-z_4)}{ ( z_2-2z_1)(z_3-2z_1)(z_3-z_1-z_2)(z_4-2z_1)(z_4-z_1-z_2)(z_4-z_1-z_3)(z_4-2z_2)}
Local algebra C[x,y]/(xy,x^2+y^3)
\mu 4
Tp degree 4l+5
F_Q
Local algebra C[x,y]/(x^2,xy,y^4)
\mu 4
Tp degree 4l+6
F_Q
Local algebra C[x,y]/(x^3,xy,y^3)
\mu 4
Tp degree 4l+6
F_Q
Local algebra C[x,y]/(x^2+y^2,x^3,x^2y)
\mu 4
Tp degree 4l+6
F_Q
Local algebra C[x,y]/(x^2,xy^2,y^3)
\mu 4
Tp degree 4l+7
F_Q
Local algebra C[x,y,z]/(xy,xz,yz,x^2-y^2,x^2-z^2)
\mu 4
Tp degree 4l+7
F_Q
Local algebra C[x,y,z]/(x^2,y^2,z^2,xz,yz)
\mu 4
Tp degree 4l+8
F_Q
Local algebra C[x,y,z]/(x^2,y^2,z^3,xy,yz,xz)
\mu 4
Tp degree 4l+10
F_Q
Local algebra C[x,y,z,t]/(x,y,z,t)^2
\mu 4
Tp degree 4l+16
F_Q z_1^3z_2^2z_3
Explicit Thom series \Delta_{3,3,3,3}

\mu=5 — under construction

Local algebra C[x]/(x^6)
\mu 5
Tp degree 5l+5
F_Q =F_1/F_2 where
F_1=(z_5-2z_1-z_2)(2z_1^2+3z_1z_2-2z_1z_5+2z_2z_3-z_2z_4-z_2z_5-z_3z_4+z_4z_5) and
F_2=\prod_{i+j\leq k \leq 5} (z_k-z_i-z_j)
Local algebra C[x,y,z,t,u]/(x,y,z,t,u)^2
\mu 5
Tp degree 5l+25
F_Q z_1^4z_2^3z_3^2z_4
Explicit Thom series \Delta_{4,4,4,4,4}

\mu=6 — under construction

Local algebra C[x]/(x^7)
\mu 6
Tp degree 6l+6
F_Q =F_1/F_2 where
F_1 = -(8z_1^7+ 44z_1^6z_2+ 84z_1^5z_2^2+ 70z_1^4z_2^3+ 26z_1^3z_2^4+ 4z_1^2z_2^5+ 12z_1^6z_3+ 70z_1^5z_2z_3+ 136z_1^4z_2^2z_3+ 103z_1^3z_2^3z_3+ 29z_1^2z_2^4z_3+ 2z_1z_2^5z_3+ 8z_1^5z_3^2+ 38z_1^4z_2z_3^2+ 71z_1^3z_2^2z_3^2+ 46z_1^2z_2^3z_3^2+ 10z_1z_2^4z_3^2+ 4z_1^4z_3^3+ 16z_1^3z_2z_3^3+ 15z_1^2z_2^2z_3^3+ 4z_1z_2^3z_3^3- 4z_1^6z_4- 18z_1^5z_2z_4- 10z_1^4z_2^2z_4+ 14z_1^3z_2^3z_4+ 14z_1^2z_2^4z_4+ 4z_1z_2^5z_4+ 6z_1^5z_3z_4+ 23z_1^4z_2z_3z_4+ 17z_1^3z_2^2z_3z_4+ 19z_1^2z_2^3z_3z_4+ 11z_1z_2^4z_3z_4+ 2z_2^5z_3z_4- 2z_1^4z_3^2z_4+z_1^3z_2z_3^2z_4+ 14z_1^2z_2^2z_3^2z_4+ 13z_1z_2^3z_3^2z_4+ 4z_2^4z_3^2z_4+ 4z_1z_2^2z_3^3z_4+ 2z_2^3z_3^3z_4- 8z_1^3z_2^2z_4^2- 12z_1^2z_2^3z_4^2- 4z_1z_2^4z_4^2- 16z_1^3z_2z_3z_4^2- 24z_1^2z_2^2z_3z_4^2- 12z_1z_2^3z_3z_4^2- 2z_2^4z_3z_4^2- 8z_1^3z_3^2z_4^2- 12z_1^2z_2z_3^2z_4^2- 12z_1z_2^2z_3^2z_4^2- 4z_2^3z_3^2z_4^2- 4z_1z_2z_3^3z_4^2- 2z_2^2z_3^3z_4^2- 4z_1^4z_4^3- 2z_1^3z_2z_4^3+ 2z_1^2z_2^2z_4^3+ 6z_1^3z_3z_4^3-z_1^2z_2z_3z_4^3-z_1z_2^2z_3z_4^3- 2z_1^2z_3^2z_4^3+z_1z_2z_3^2z_4^3- 8z_1^6z_5- 32z_1^5z_2z_5- 54z_1^4z_2^2z_5- 48z_1^3z_2^3z_5- 22z_1^2z_2^4z_5- 4z_1z_2^5z_5- 20z_1^5z_3z_5- 80z_1^4z_2z_3z_5- 95z_1^3z_2^2z_3z_5- 44z_1^2z_2^3z_3z_5- 11z_1z_2^4z_3z_5- 2z_2^5z_3z_5- 16z_1^4z_3^2z_5- 56z_1^3z_2z_3^2z_5- 48z_1^2z_2^2z_3^2z_5- 8z_1z_2^3z_3^2z_5+ 2z_2^4z_3^2z_5- 4z_1^3z_3^3z_5- 8z_1^2z_2z_3^3z_5- 3z_1z_2^2z_3^3z_5- 12z_1^4z_2z_4z_5- 22z_1^3z_2^2z_4z_5- 14z_1^2z_2^3z_4z_5- 4z_1z_2^4z_4z_5+ 6z_1^3z_2z_3z_4z_5- 13z_1^2z_2^2z_3z_4z_5- 19z_1z_2^3z_3z_4z_5- 6z_2^4z_3z_4z_5- 4z_1^2z_2z_3^2z_4z_5- 10z_1z_2^2z_3^2z_4z_5- 5z_2^3z_3^2z_4z_5- 2z_1z_2z_3^3z_4z_5-z_2^2z_3^3z_4z_5+ 4z_1^4z_4^2z_5+ 14z_1^3z_2z_4^2z_5+ 16z_1^2z_2^2z_4^2z_5+ 6z_1z_2^3z_4^2z_5+ 6z_1^3z_3z_4^2z_5+ 17z_1^2z_2z_3z_4^2z_5+ 16z_1z_2^2z_3z_4^2z_5+ 5z_2^3z_3z_4^2z_5+ 10z_1z_2z_3^2z_4^2z_5+ 6z_2^2z_3^2z_4^2z_5+ 2z_1z_3^3z_4^2z_5+z_2z_3^3z_4^2z_5- 4z_1^3z_4^3z_5- 2z_1^2z_2z_4^3z_5+ 2z_1z_2^2z_4^3z_5+ 6z_1^2z_3z_4^3z_5-z_1z_2z_3z_4^3z_5-z_2^2z_3z_4^3z_5- 2z_1z_3^2z_4^3z_5+z_2z_3^2z_4^3z_5+ 4z_1^4z_2z_5^2+ 10z_1^3z_2^2z_5^2+ 10z_1^2z_2^3z_5^2+ 4z_1z_2^4z_5^2+ 8z_1^4z_3z_5^2+ 18z_1^3z_2z_3z_5^2+ 11z_1^2z_2^2z_3z_5^2+ 5z_1z_2^3z_3z_5^2+ 2z_2^4z_3z_5^2+ 8z_1^3z_3^2z_5^2+ 18z_1^2z_2z_3^2z_5^2+z_1z_2^2z_3^2z_5^2- 2z_2^3z_3^2z_5^2+ 4z_1^4z_4z_5^2+ 10z_1^3z_2z_4z_5^2+ 6z_1^2z_2^2z_4z_5^2- 6z_1^3z_3z_4z_5^2- 7z_1^2z_2z_3z_4z_5^2+ 7z_1z_2^2z_3z_4z_5^2+ 4z_2^3z_3z_4z_5^2+ 2z_1^2z_3^2z_4z_5^2+ 3z_1z_2z_3^2z_4z_5^2- 4z_1^2z_2z_4^2z_5^2- 4z_1z_2^2z_4^2z_5^2- 4z_1^2z_3z_4^2z_5^2- 4z_1z_2z_3z_4^2z_5^2- 2z_2^2z_3z_4^2z_5^2- 2z_2z_3^2z_4^2z_5^2- 24z_1^6z_6- 112z_1^5z_2z_6- 180z_1^4z_2^2z_6- 117z_1^3z_2^3z_6- 29z_1^2z_2^4z_6- 2z_1z_2^5z_6- 36z_1^5z_3z_6- 160z_1^4z_2z_3z_6- 233z_1^3z_2^2z_3z_6- 129z_1^2z_2^3z_3z_6- 23z_1z_2^4z_3z_6- 14z_1^4z_3^2z_6- 63z_1^3z_2z_3^2z_6- 89z_1^2z_2^2z_3^2z_6- 42z_1z_2^3z_3^2z_6- 6z_2^4z_3^2z_6- 6z_1^3z_3^3z_6- 15z_1^2z_2z_3^3z_6- 11z_1z_2^2z_3^3z_6- 2z_2^3z_3^3z_6+ 8z_1^5z_4z_6+ 24z_1^4z_2z_4z_6+ 14z_1^3z_2^2z_4z_6- 12z_1^2z_2^3z_4z_6- 11z_1z_2^4z_4z_6- 2z_2^5z_4z_6- 12z_1^4z_3z_4z_6- 16z_1^3z_2z_3z_4z_6- 3z_1^2z_2^2z_3z_4z_6- 7z_1z_2^3z_3z_4z_6- 3z_2^4z_3z_4z_6+ 12z_1^3z_3^2z_4z_6+ 8z_1^2z_2z_3^2z_4z_6- 3z_1z_2^2z_3^2z_4z_6- 3z_2^3z_3^2z_4z_6+ 4z_1z_2z_3^3z_4z_6+ 4z_1^4z_4^2z_6+ 6z_1^3z_2z_4^2z_6+ 14z_1^2z_2^2z_4^2z_6+ 13z_1z_2^3z_4^2z_6+ 2z_2^4z_4^2z_6- 2z_1^3z_3z_4^2z_6+ 29z_1^2z_2z_3z_4^2z_6+ 26z_1z_2^2z_3z_4^2z_6+ 6z_2^3z_3z_4^2z_6+ 14z_1^2z_3^2z_4^2z_6+ 11z_1z_2z_3^2z_4^2z_6+ 6z_2^2z_3^2z_4^2z_6+ 2z_2z_3^3z_4^2z_6+ 4z_1^3z_4^3z_6+ 2z_1^2z_2z_4^3z_6- 2z_1z_2^2z_4^3z_6- 6z_1^2z_3z_4^3z_6+z_1z_2z_3z_4^3z_6+z_2^2z_3z_4^3z_6+ 2z_1z_3^2z_4^3z_6-z_2z_3^2z_4^3z_6+ 32z_1^5z_5z_6+ 114z_1^4z_2z_5z_6+ 143z_1^3z_2^2z_5z_6+ 78z_1^2z_2^3z_5z_6+ 19z_1z_2^4z_5z_6+ 2z_2^5z_5z_6+ 54z_1^4z_3z_5z_6+ 161z_1^3z_2z_3z_5z_6+ 146z_1^2z_2^2z_3z_5z_6+ 46z_1z_2^3z_3z_5z_6+ 5z_2^4z_3z_5z_6+ 28z_1^3z_3^2z_5z_6+ 58z_1^2z_2z_3^2z_5z_6+ 38z_1z_2^2z_3^2z_5z_6+ 4z_2^3z_3^2z_5z_6+ 6z_1^2z_3^3z_5z_6+ 7z_1z_2z_3^3z_5z_6+z_2^2z_3^3z_5z_6- 8z_1^4z_4z_5z_6- 12z_1^3z_2z_4z_5z_6+ 6z_1^2z_2^2z_4z_5z_6+ 14z_1z_2^3z_4z_5z_6+ 4z_2^4z_4z_5z_6- 2z_1^2z_2z_3z_4z_5z_6+ 5z_1z_2^2z_3z_4z_5z_6+ 6z_2^3z_3z_4z_5z_6- 2z_1^2z_3^2z_4z_5z_6- 6z_1z_2z_3^2z_4z_5z_6+ 2z_2^2z_3^2z_4z_5z_6- 2z_1z_3^3z_4z_5z_6- 4z_1^3z_4^2z_5z_6- 20z_1^2z_2z_4^2z_5z_6- 20z_1z_2^2z_4^2z_5z_6- 4z_2^3z_4^2z_5z_6- 16z_1^2z_3z_4^2z_5z_6- 22z_1z_2z_3z_4^2z_5z_6- 11z_2^2z_3z_4^2z_5z_6- 3z_1z_3^2z_4^2z_5z_6- 8z_2z_3^2z_4^2z_5z_6-z_3^3z_4^2z_5z_6- 8z_1^4z_5^2z_6- 26z_1^3z_2z_5^2z_6- 27z_1^2z_2^2z_5^2z_6- 13z_1z_2^3z_5^2z_6- 2z_2^4z_5^2z_6- 18z_1^3z_3z_5^2z_6- 33z_1^2z_2z_3z_5^2z_6- 15z_1z_2^2z_3z_5^2z_6- 5z_2^3z_3z_5^2z_6- 14z_1^2z_3^2z_5^2z_6- 11z_1z_2z_3^2z_5^2z_6+ 3z_2^2z_3^2z_5^2z_6- 4z_1^3z_4z_5^2z_6- 2z_1^2z_2z_4z_5^2z_6-z_1z_2^2z_4z_5^2z_6- 2z_2^3z_4z_5^2z_6+ 10z_1^2z_3z_4z_5^2z_6- 4z_2^2z_3z_4z_5^2z_6- 2z_1z_3^2z_4z_5^2z_6+ 2z_2z_3^2z_4z_5^2z_6+ 4z_1^2z_4^2z_5^2z_6+ 7z_1z_2z_4^2z_5^2z_6+ 2z_2^2z_4^2z_5^2z_6+ 3z_1z_3z_4^2z_5^2z_6+ 5z_2z_3z_4^2z_5^2z_6+z_3^2z_4^2z_5^2z_6+ 28z_1^5z_6^2+ 108z_1^4z_2z_6^2+ 133z_1^3z_2^2z_6^2+ 61z_1^2z_2^3z_6^2+ 9z_1z_2^4z_6^2+ 36z_1^4z_3z_6^2+ 122z_1^3z_2z_3z_6^2+ 130z_1^2z_2^2z_3z_6^2+ 48z_1z_2^3z_3z_6^2+ 4z_2^4z_3z_6^2+ 6z_1^3z_3^2z_6^2+ 37z_1^2z_2z_3^2z_6^2+ 36z_1z_2^2z_3^2z_6^2+ 10z_2^3z_3^2z_6^2+ 2z_1^2z_3^3z_6^2+ 3z_1z_2z_3^3z_6^2+ 2z_2^2z_3^3z_6^2- 4z_1^4z_4z_6^2- 10z_1^3z_2z_4z_6^2- 10z_1^2z_2^2z_4z_6^2- 2z_1z_2^3z_4z_6^2+z_2^4z_4z_6^2+ 2z_1^3z_3z_4z_6^2- 17z_1^2z_2z_3z_4z_6^2- 14z_1z_2^2z_3z_4z_6^2- 2z_2^3z_3z_4z_6^2- 14z_1^2z_3^2z_4z_6^2- 9z_1z_2z_3^2z_4z_6^2- 3z_2^2z_3^2z_4z_6^2- 2z_2z_3^3z_4z_6^2- 4z_1^3z_4^2z_6^2- 8z_1^2z_2z_4^2z_6^2- 7z_1z_2^2z_4^2z_6^2- 3z_2^3z_4^2z_6^2- 14z_1z_2z_3z_4^2z_6^2- 6z_2^2z_3z_4^2z_6^2- 6z_1z_3^2z_4^2z_6^2-z_2z_3^2z_4^2z_6^2- 42z_1^4z_5z_6^2- 115z_1^3z_2z_5z_6^2- 104z_1^2z_2^2z_5z_6^2- 36z_1z_2^3z_5z_6^2- 5z_2^4z_5z_6^2- 52z_1^3z_3z_5z_6^2- 106z_1^2z_2z_3z_5z_6^2- 64z_1z_2^2z_3z_5z_6^2- 8z_2^3z_3z_5z_6^2- 12z_1^2z_3^2z_5z_6^2- 20z_1z_2z_3^2z_5z_6^2- 10z_2^2z_3^2z_5z_6^2- 2z_1z_3^3z_5z_6^2-z_2z_3^3z_5z_6^2+ 12z_1^3z_4z_5z_6^2+ 18z_1^2z_2z_4z_5z_6^2+ 4z_1z_2^2z_4z_5z_6^2- 2z_2^3z_4z_5z_6^2+ 4z_1^2z_3z_4z_5z_6^2+ 17z_1z_2z_3z_4z_5z_6^2+ 6z_2^2z_3z_4z_5z_6^2+ 7z_1z_3^2z_4z_5z_6^2+ 4z_2z_3^2z_4z_5z_6^2+z_3^3z_4z_5z_6^2+ 6z_1^2z_4^2z_5z_6^2+ 12z_1z_2z_4^2z_5z_6^2+ 6z_2^2z_4^2z_5z_6^2+ 7z_1z_3z_4^2z_5z_6^2+ 7z_2z_3z_4^2z_5z_6^2+ 2z_3^2z_4^2z_5z_6^2+ 14z_1^3z_5^2z_6^2+ 27z_1^2z_2z_5^2z_6^2+ 17z_1z_2^2z_5^2z_6^2+ 5z_2^3z_5^2z_6^2+ 16z_1^2z_3z_5^2z_6^2+ 18z_1z_2z_3z_5^2z_6^2+ 4z_2^2z_3z_5^2z_6^2+ 6z_1z_3^2z_5^2z_6^2-z_2z_3^2z_5^2z_6^2- 4z_1^2z_4z_5^2z_6^2- 4z_1z_2z_4z_5^2z_6^2+z_2^2z_4z_5^2z_6^2- 3z_1z_3z_4z_5^2z_6^2- 3z_2z_3z_4z_5^2z_6^2-z_3^2z_4z_5^2z_6^2- 3z_1z_4^2z_5^2z_6^2- 3z_2z_4^2z_5^2z_6^2- 2z_3z_4^2z_5^2z_6^2- 16z_1^4z_6^3- 48z_1^3z_2z_6^3- 40z_1^2z_2^2z_6^3- 10z_1z_2^3z_6^3- 12z_1^3z_3z_6^3- 36z_1^2z_2z_3z_6^3- 27z_1z_2^2z_3z_6^3- 6z_2^3z_3z_6^3- 8z_1z_2z_3^2z_6^3- 4z_2^2z_3^2z_6^3+ 6z_1^2z_2z_4z_6^3+ 7z_1z_2^2z_4z_6^3+ 2z_2^3z_4z_6^3+ 6z_1^2z_3z_4z_6^3+ 11z_1z_2z_3z_4z_6^3+ 4z_2^2z_3z_4z_6^3+ 4z_1z_3^2z_4z_6^3+ 2z_2z_3^2z_4z_6^3+ 2z_1z_2z_4^2z_6^3+z_2^2z_4^2z_6^3+ 2z_1z_3z_4^2z_6^3+z_2z_3z_4^2z_6^3+ 24z_1^3z_5z_6^3+ 48z_1^2z_2z_5z_6^3+ 28z_1z_2^2z_5z_6^3+ 4z_2^3z_5z_6^3+ 18z_1^2z_3z_5z_6^3+ 23z_1z_2z_3z_5z_6^3+ 7z_2^2z_3z_5z_6^3+ 4z_2z_3^2z_5z_6^3- 6z_1^2z_4z_5z_6^3- 10z_1z_2z_4z_5z_6^3- 4z_2^2z_4z_5z_6^3- 7z_1z_3z_4z_5z_6^3- 6z_2z_3z_4z_5z_6^3- 2z_3^2z_4z_5z_6^3- 2z_1z_4^2z_5z_6^3- 2z_2z_4^2z_5z_6^3-z_3z_4^2z_5z_6^3- 8z_1^2z_5^2z_6^3- 10z_1z_2z_5^2z_6^3- 4z_2^2z_5^2z_6^3- 6z_1z_3z_5^2z_6^3-z_2z_3z_5^2z_6^3+ 3z_1z_4z_5^2z_6^3+ 2z_2z_4z_5^2z_6^3+ 2z_3z_4z_5^2z_6^3+z_4^2z_5^2z_6^3+ 4z_1^3z_6^4+ 8z_1^2z_2z_6^4+ 3z_1z_2^2z_6^4+ 4z_1z_2z_3z_6^4+ 2z_2^2z_3z_6^4- 2z_1z_2z_4z_6^4-z_2^2z_4z_6^4- 2z_1z_3z_4z_6^4-z_2z_3z_4z_6^4- 6z_1^2z_5z_6^4- 7z_1z_2z_5z_6^4-z_2^2z_5z_6^4- 2z_2z_3z_5z_6^4+ 2z_1z_4z_5z_6^4+ 2z_2z_4z_5z_6^4+z_3z_4z_5z_6^4+ 2z_1z_5^2z_6^4+z_2z_5^2z_6^4-z_4z_5^2z_6^4)
and
F_2=\prod_{i+j\leq k \leq 6} (z_k-z_i-z_j)
Local algebra C[x,y,z,t,u,v]/(x,y,z,t,u,v)^2
\mu 6
Tp degree 6l+36
F_Q z_1^5 z_2^4 z_3^3 z_4^2 z_5
Explicit Thom series \Delta_{5,5,5,5,5,5}

General \Sigma^{i,j} and \Phi_{m,r} to be added.